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Abstract. Given a closed convex set K in R
n; a vector function F : K ×K → R

m; a closed convex
(not necessarily pointed) cone P(x) in R

m with non-empty interior, int P(x) �= ∅, various existence
results to the problem

find x̄ ∈ K such that F(x̄, y) �∈ −int P(x̄) ∀ y ∈ K,

under P(x)-convexity/lower semicontinuity of F(x, ·) and pseudomonotonicity on F , are estab-
lished. Moreover, under a stronger pseudomonotonicity assumption on F (which reduces to the
previous one in case m = 1), some characterizations of the non-emptiness of the solution set are
given. Also, several alternative necessary and/or sufficient conditions for the solution set to be non-
empty and compact are presented. However, the solution set fails to be convex in general. A sufficient
condition to the solution set to be a singleton is also stated. The classical case P(x) = R

m+ is specially
discussed by assuming semi-strict quasiconvexity. The results are then applied to vector variational
inequalities and minimization problems. Our approach is based upon the computing of certain cones
containing particular recession directions of K and F .

Key words: Convex vector optimization, Vector equilibrium problem, Vector variational inequalit-
ies, Scalar optimization, Weakly efficient solution, Efficient solution, Recession function, Recession
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1. Introduction

Given a closed convex set K in R
n; a vector-valued function F : K × K → R

m,
the problem of determining the existence of x̄ ∈ K such that

F(x̄, x) �∈ −int P(x̄) ∀ x ∈ K, (1.1)

has been the focus of attention of many mathematicians in recent years. The set-
valued map P : K → R

m is such that P(x) is a non-empty closed convex (not
necessarily pointed) cone with non-empty interior, int P(x) �= ∅, for all x ∈ K,
such a cone determines the underlying preference relation on R

m.
The name of equilibrium problem, to our best knowledge, was coined in Blum

and Oettli (1994) for the scalar version of the problem (1.1), i.e., m = 1. This kind
of problems includes the classical ones in vector optimization, vector variational
inequalities.
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Scalar equilibrium problems (m = 1) were discussed in several papers, among
others we quote Brezis et al. (1972), Joly and Mosco (1979), Blum and Oettli
(1994), Bianchi and Schaible (1996), Hadjisavvas and Schaible (1998a), Hadjis-
avvas and Schaible (1998b), Bianchi et al. (1997), and more recently in Flores-
Bazán (2000), Bianchi and Pini (2001); vector equilibrium problems as established
in (1.1) with P being constant or not, were studied in Ansari (2000), Chadli and
Riahi (2000), Tan and Tinh (1998), Oettli (1997), Bianchi et al. (1997), Hadjis-
avvas and Schaible (1998b), see also Hadjisavvas and Schaible (1998a), Gian-
nessi (2000) for some survey on this subject.

The case F(x, y) = G(y) − G(x) for some vector-valued function G with
P constant has been dealt with in Chen and Craven (1994), Deng (1998a), Deng
(1998b), Flores-Bazán (1999), and references therein, under the P -convexity as-
sumption on F , and, in Ruíz-Canales and Rufían-Lizana (1995), Flores-Bazán
(1999), under the (semi-strict) quasiconvexity condition. In Chen and Craven
(1994) the differentiability together with R

m+-convexity of G are assumed. In this
paper, such a problem is substituted, as in the scalar convex case, by the problem

find x̄ ∈ K such that DG(x̄)(y − x̄) �∈ −int R
m
+ for all y ∈ K. (1.2)

Here DG(x) stands for the derivative of G at x, which is a matrix of order m × n

given by the partial derivatives ∂gi/∂xj (x), where G = (g1, ..., gm). Hence, the
existence theorem proved in Chen and Craven (1994) will be derived as a con-
sequence of our results (see Section 5). Related results can be also found in Siddiqi
et al. (1995), Yang and Goh (1997).

In most of the preceding papers the boundedness of K is avoided. This is done,
following the approach employed in Blum and Oettli (1994), Bianchi et al. (1997),
Oettli (1997), by assuming the existence of a bounded set such that no element
outside this set can be a candidate for solution. Therefore, in this case, the solu-
tion set will be bounded (Chen 1992; Chen and Craven 1994; Siddiqi et al. 1995;
Daniilidis and Hadjisavvas 1996; Bianchi et al. 1997; Hadjisavvas and Schaible
1998a; Oettli 1997; Ansari 2000; Chadli and Riahi 2000). The results established
in Tan and Tinh (1998), following the lines of Blum and Oettli (1994), allow the
solution set be unbounded.

In this paper the non-compactness (unboundedness) assumption will be treated
by using the notion of asymptotic functions and cones. This technique was also
employed in Flores-Bazán (2000) for scalar equilibrium problems and in Deng
(1998a,b), Flores-Bazán (1999) for vector minimization problems. Our results ap-
ply also to situations in which the solution set may be unbounded.

The purpose of the present paper is to provide necessary and/or sufficient condi-
tions for the non-emptiness of the solution set to problem (1.1). In addition, if such
solution set is required to be bounded, the necessary and/or sufficient condition
become more precise.

In Section 2 we introduce some preliminary facts on asymptotic cones and
vector-valued functions. Section 3 is devoted to establish the main existence the-
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orems under certain conditions involving P(x)-convexity/lower semicontinuity on
F(x, ·) besides pseudomonotonicity. The sufficiency conditions will be also ne-
cessary under a stronger pseudomonotonicity assumption (see Theorems 3.11 and
3.14), which coincides with the previous one when m = 1. The classical case
P(x) = R

m+, is studied extensively in Section 4 under the semi-strict quasicon-
vexity condition on each fi(x, ·), where F = (f1, ..., fm). Applications to vector
variational inequality and minimization problems are exhibited in Section 5.

The results of this paper are part of the Master Thesis of the second author
carried out at the Departamento de Matemática de la Facultad de Ciencias Físicas
y Matemáticas de la Universidad de Concepción.

2. Basic Facts and Preliminaries

Given any closed set K in R
n (actually the asymptotic notion to be considered is

blind to closure), we define the asymptotic cone of K as the closed set

K∞ =
{
x ∈ R

n : ∃ tk ↓ 0, ∃ xk ∈ K, tkxk → x
}
.

We set ∅∞ = ∅. For any given function h : R
n → R ∪ {+∞}, the asymptotic

function of h is defined as the function h∞ such that

epi h∞ = (epi h)∞.

Consequently, it is not difficult to prove that (Baiocchi et al., 1988)

h∞(y) = inf

[
lim inf
k→+∞ tkh

(
xk

tk

)
: tn ↓ 0, xk → y

]
.

In case K is also convex, it is known that for any given x0 ∈ K,

K∞ =
{
x ∈ R

n : x0 + tx ∈ K ∀ t > 0
}
.

This cone is independent on x0, and it gives rise to the notion of recession cone.
Moreover, when h is a convex and l.s.c. function, we have

h∞(x) = lim
λ→+∞

h(x0 + λx) − h(x0)

λ

= sup
λ>0

h(x0 + λx) − h(x0)

λ
∀ x0 ∈ dom h,

where as usual, dom h = {x ∈ R
n : h(x) < +∞}. We notice the independence of

h∞ on the choice of x0. In this case h∞ is called the recession function of h. The
epigraph of h is the set epi h = {(x, t) ∈ R

n × R : h(x) � t}.
We collect some basic results on asymptotic cones in the next proposition that

will be useful in the sequel.
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PROPOSITION 2.1. The following holds:
(a) K1 ⊂ K2 implies K∞

1 ⊂ K∞
2 ;

(b) (K + x)∞ = K∞ for all x ∈ R
n;

(c) K∞ = {0} if, and only if, K is bounded;
(d) Let (Ki), i ∈ I , be any family of nonempty sets in R

n, then(⋂
i∈I

Ki

)∞ ⊂
⋂
i∈I

(Ki)
∞.

If, in addition, ∩iKi �= ∅ and each set Ki , i ∈ I , is closed and convex, then
we obtain an equality in the previous inclusion.

In what follows, P will denote a closed convex cone in R
m, not necessarily pointed,

such that P �= R
m.

DEFINITION 2.2. For a given closed convex cone P ⊂ R
m, we say the mapping

H : K → R
m:

(i) is P -convex if

αH(y) + (1 − α)H(z) ∈ H(αy + (1 − α)z)+ P

for all y, z ∈ K, and all α ∈ [0, 1].]
(ii) is P -lower semicontinuous (P -lsc) at x0 ∈ K if for any neighborhood V of

H(x0) in R
m there exists a neighborhood U of x0 in R

n such that H(U∩K) ⊂
V + P .
The mapping H : K → R

m is said to be P -lsc in K if it is at every point
x0 ∈ K.

We point out that the R
m+-convexity/lower semicontinuity of H is equivalent to the

(usual) convexity/lower semicontinuity of each component of H .
The next lemma can be also found in Tan and Tinh (1998) in the particular

case W = R
m \ −int P . It and the following proposition describe the geometrical

interpretation of P -convexity and P -lower semicontinuity.

LEMMA 2.3. Let W be a closed set in R
m such that W + P ⊂ W ; let H : K →

R
m be P -lsc. Then, the set A = {y ∈ K : H(y) ∈ −W } is closed. Therefore the

set {y ∈ K : H(y) ∈ −P } is also closed.
Proof. Let (xk), k ∈ N, be any sequence in A such that xk → x̄. We will

prove that x̄ ∈ A. If, on the contrary x̄ �∈ A, we could have H(x̄) ∈ R
m \ −W .

Thus, by the P -lsc of H at x̄, there is an open neighborhood U of x̄ satisfying
H(U ∩ K) ⊂ R

m \ −W + P ⊂ R
m \ −W . Since xk ∈ U ∩ K for k sufficiently

large, the previous inclusion implies that H(xk) ∈ R
m \ −W for k large enough,

which contradicts the choice of xk ∈ A, proving the desired result. �
Regarding the previous notions we have the following proposition. Part (b) can
be found in Bianchi et al. (1997) and Part (a) follows from the very definition.
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For additional relationship between these notions we refer to Luc (1989). In what
follows

epi H =
{
(x, y) ∈ K × R

m : y ∈ H(x) + P
}
.

PROPOSITION 2.4. Let H : K → R
m. Then,

(a) epi H is convex if and only if H is P -convex;
(b) Assume int P �= ∅, H is P -lsc if and only if {x ∈ K : H(x) − λ �∈ int P } is

closed for all λ ∈ R
m.

3. Main Existence Results

In this section we will devoted to the study of the problem

find x̄ ∈ K such that F(x̄, y) �∈ −int P(x̄) for all y ∈ K. (3.1)

The set of solutions to this problem is denoted by EW . We also consider the
problem

find x̄ ∈ K such that F(y, x̄) �∈ int P(y) for all y ∈ K, (3.1′)

and its set of solutions is denoted by E′
W .

The following abstract result, which is not contained in any of the results exist-
ing in Oettli (1997), Bianchi et al. (1997), Hadjisavvas and Schaible (1998b), Tan
and Tinh (1998), is proven by applying a similar reasoning as that used in the proof
of Lemma 1 in Oettli (1997), and it cannot be obtained from any result for scalar
equilibrium problem (as a device described in Oettli 1997) since we deal with a
moving cone P(x). A related result can be found in Chadli and Riahi (2000).

THEOREM 3.1. Let K be a convex and compact set in R
n. Let W be any set-

valued mapping with non-empty values. Let F : K × K → R
m be a vector-valued

mapping satisfying the following assumptions:

(A0) F (x, x) ∈ W(x) for all x ∈ K;
(A1) for all x, y ∈ K, F(x, y) ∈ W(x) implies F(y, x) ∈ −W(y);
(A2) for all x ∈ K, the set {ξ ∈ K : F(x, ξ) ∈ −W(x)} is closed;
(A3) for all x ∈ K, the set {ξ ∈ K : F(x, ξ) �∈ W(x)} is convex;
(A4) for all y ∈ K: F(x, y) ∈ −W(x) for all x ∈ K implies F(y, x) ∈ W(y) for

all x ∈ K.

Then, the solution set to the problem

find x̄ ∈ K such that F(x̄, y) ∈ W(x̄) for all y ∈ K,

and that of the problem

find x̄ ∈ K such that F(y, x̄) ∈ −W(y) for all y ∈ K

are non-empty and both coincide, and they are closed.
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Proof. We first find x̄ ∈ K such that

x̄ ∈
⋂
y∈K

{
x ∈ K : − F(y, x) ∈ W(y)

}
.

To that end, we shall use the famous KKM lemma (see for instance Aubin, 1979;
Fan, 1961). Set

G(y) =
{
x ∈ K : − F(y, x) ∈ W(y)

}
.

Because of assumption (A2), each set G(y) is closed and bounded. In order to
apply the KKM lemma, we need to prove that co{y1, ..., yk} ⊂ ⋃

i G(yi) for
every k ∈ N. If y = ∑k

i=1 αiyi �∈ ⋃k
i=1 G(yi) for some αi � 0, i = 1, ..., k,∑k

i=1 αi = 1, then y �∈ G(yi) for all i = 1, ..., k. Thus −F(yi, y) �∈ W(yi),
which implies F(y, yi , ) �∈ W(y) by assumption (A1). Thus F(y, y) �∈ W(y)

because of assumption (A3), which contradicts assumption (A0). This proves that
co {y1, ..., yk} ⊂ ⋃k

i=1 G(yi) for all k ∈ N. An application of the KKM lemma
yields the existence of x̄ ∈ K such that x̄ ∈ ⋂

y∈K G(y), i.e., −F(y, x̄) ∈ W(y) for
all y ∈ K, in other words, the second problem has solution. Now we apply assump-
tion (A4) to conclude that such a solution is also a solution of the first problem.
Since every solution to the first is a solution to the second by assumption (A1),
we conclude that both solution sets coincide. The closedness is a consequence of
(A2). �
We now adapt the previous abstract result to our problem and we shall give simpler
verifiable conditions on P and F ensuring the validity of all assumptions imposed
in Theorem 3.1.
The basic assumptions on P are listed in the following hypothesis (H0), whereas
the basic assumptions on F are listed in hypothesis (H1) below.

HYPOTHESIS (H0). The set-valued map P : K → R
m is such that P(x) is a

non-empty closed convex (not necessarily pointed) cone with non-empty interior,
int P(x) �= ∅, for all x ∈ K;

HYPOTHESIS (H1). The vector-valued map F : K × K → R
m is such that

(f0) for all x ∈ K, F(x, x) ∈ l(P (x))
.= P(x) ∩ (−P(x));

(f1) for all x, y ∈ K, F(x, y) �∈ −int P(x) implies F(y, x) �∈ int P(y);
(f2) for all x ∈ K, the mapping F(x, ·) : K → R

m is P(x)-convex and P(x)-lsc.;
(f3) for all x, y ∈ K, the set {ξ ∈ [x, y] : F(ξ, y) �∈ −int P(ξ)} is closed. Here

[x, y] stands for the closed line segment joining x and y.

By using hypotheses (H0) and (H1), Theorem 3.1 yields the next result.

LEMMA 3.2. Let K be a convex and compact set in R
n. Let P be a set-valued

map satisfying hypothesis (H0). Let F : K×K → R
m be a vector-valued mapping

satisfying hypothesis (H1). Then EW = E′
W is a non-empty closed set, i.e., there

exists x̄ ∈ K such that F(x̄, x) �∈ −int P(x̄) for all x ∈ K.
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Proof. We only need to verify the assumptions (A2), (A3) and (A4) of Theorem
3.1 for W(x) = R

m\−int P(x). Assumption (A2) follows by applying Lemma 2.3
to F(x, ·) and W(x) as before; assumption (A3) is a direct consequence of (H0),
the P(y)-convexity of F(y, ·) and the fact R

m \ −W(y) ⊂ P(y) for all y ∈ K. Let
us verify assumption (A4): take any y ∈ K such that F(x, y) �∈ int P(x) for all
x ∈ K. For every x ∈ K consider xt = y+ t (x−y) for t ∈ ]0, 1[. Clearly xt ∈ K.
The P(xt)-convexity of F(xt , ·) implies

tF (xt , x) + (1 − t)F (xt , y) ∈ F(xt , xt ) + P(xt ).

Since F(xt , y) �∈ intP(xt ), from the previous inclusion one has

tF (xt , x) ∈ P(xt ) + (1 − t)(Rm \ −int P(xt )) ⊂
⊂ P(xt ) + (Rm \ −int P(xt )) ⊂ R

m \ −int P(xt ).

It follows that F(xt , x) �∈ −int P(xt). Letting t ↓ 0, we obtain by assumption (f3),
F(y, x) �∈ −int P(y). Since x was arbitrary, the desired result is proved. �
REMARK 3.3.

(i) We notice from the last part of the proof of the previous lemma (see the
verification of assumption (A4)) that under hypothesis (H0) and assumptions
(f0), (f2) and (f3) of hypothesis (H1), we have actually proved that

F(y, x̄) �∈ int P(y) ∀ y ∈ K implies F(x̄, y) �∈ −int P(x̄) ∀ y ∈ K.

This implication is related to a certain maximal pseudomonotonicity condi-
tion already discussed in Oettli (1997).

(ii) In the proof of the preceding lemma only the assumption F(x, x) ∈ P(x) for
all x ∈ K has been used. The condition F(x, x) ∈ −P(x) will be needed
when we deal with K unbounded.

(iii) In the case when P is non-constant, condition (f3) of hypothesis (H1) is
fulfilled, if, for all y ∈ K, the mapping F(·, y) is continuous (in the usual
sense) along line segments in K and the set-valued map R

m \ −int P(x)
has closed graph. If on the contrary, P is independent of x, condition (f3)

is satisfied if, for all x, y ∈ K, the mapping G : [0, 1] → R
m defined by

G(t) = F(ty+ (1− t)x, y), is P -upper semicontinuous, in the sense that, for
all t0 ∈ [0, 1] and any neighborhood V of G(t0) in R

m there exists δ ∈ ]0, 1[
such that G(t) ⊂ V − P for all t ∈ ]t0 − δ, t0 + δ[∩[0, 1].

REMARK 3.4. Looking carefully at the proof of Lemma 3.2 one can realize that
the same result holds under assumptions (f ′

0) and (f ′
1) instead of (f0) and (f1) in

hypothesis (H1), where
(f ′

0) for all x ∈ K, F(x, x) ∈ l(W(x))
.= W(x) ∩ (−W(x)), here W(x) =

R
m \ −int P(x);

(f ′
1) for all x, y ∈ K, F(x, y) �∈ −int P(x) implies F(y, x) ∈ −P(y).
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Certainly assumption (f ′
0) is weaker than (f0) whereas (f ′

1) is stronger than (f1).

Let us consider, just for a moment, the problem of finding

x̄ ∈ K such that F(x̄, y) ∈ P(x̄) for all y ∈ K. (3.2)

We denote its solution set by EP . Let us see that Theorem 3.1 will imply also an
existence result to problem (3.2) provided P(x) ∪ (−P(x)) = R

m for all x ∈ K.
The latter condition together with hypothesis (H0) say that P(x) has not to be
pointed, indeed, P(x) must be a closed half-space. Thus problem (3.2) has a more
precise formulation. The conclusion is summarized in the following corollary. If
P is constant, a related result may be found in Oettli (1997), Corollary 4 (com-
pare assumptions (i) and (v) of Corollary 2 in Oettli 1997). Simplified optimality
conditions in case F(x, y) = h(y) − h(x) with P being a constant pointed closed
convex cone is discussed in Flores-Bazán and Oettli (2001).

COROLLARY 3.5. Let K be a closed convex and bounded set in R
n. Let P be

a set-valued map satisfying hypothesis (H0). Let F : K × K → R
m be a vector-

valued map such that assumptions (f1) and (f3) of hypothesis (H1) are verified
with P(x) instead of R

m \−int P(x). Assume, in addition, that P(x)∪ (−P(x)) =
R
m for all x ∈ K. Then EP is a non-empty closed set, i.e., there exists x̄ ∈ K such

that F(x̄, x) ∈ P(x̄) for all x ∈ K.

In order to deal with the unbounded case, i.e., when K is an unbounded set, it is ne-
cessary to describe the asymptotic behavior of F along some particular directions.
These directions are determined by the following cones

R0 =
⋂
y∈K

{
v ∈ K∞ : F(y, z + λv) �∈ int P(y) ∀ λ > 0,

∀ z ∈ K such that F(y, z) ∈ −P(y)
}
,

R1 =
⋂
y∈K

{
v ∈ K∞ : F(y, y + λv) �∈ int P(y) ∀ λ > 0

}
,

which are nonempty (because of assumption (f0)) closed cones not necessarily
convex. Clearly R0 ⊂ R1. Scalar versions of these sets have been introduced in
Flores-Bazán (2000) and extend those defined in Flores-Bazán (1999). Remark
that R1 may be computed in an easier way than R0.
The importance of such cones lies in the following two results.

PROPOSITION 3.6. Let K be a closed convex set in R
n. Assume that P satisfies

hypothesis (H0). Let F : K × K → R
m such that F(x, ·) : K → R

m is P(x)-
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convex and satisfies F(x, x) ∈ P(x) for all x ∈ K. Then
⋂
y∈K

{
v ∈ K∞ : F(y, y + λv) �∈ int P(y) ∀ λ > 0

}
⊂

⊂
⋂
y∈K

{
v ∈ K∞ : F(y + λv, y) �∈ −int P(y + λv) ∀ λ > 0

}
.

Proof. Set W(x) = R
m \ −int P(x). Let v ∈ K∞ be in the set of the left

hand-side of the previous inclusion. Then for any y ∈ K and λ > 0, the P(y +
λv)-convexity of F(y + λv, ·) implies

1

2
F(y + λv, y + λv + λv) + 1

2
F(y + λv, y)

∈ F(y + λv, y + λv) + P(y + λv).

Then

1

2
F(y + λv, y) ∈ P(y + λv) + 1

2
W(y + λv) + P(y + λv) ⊂

⊂ P(y + λv) + W(y + λv) ⊂ W(y + λv).

Thus F(y + λv, y) ∈ W(y + λv). Since y ∈ K and λ > 0 were arbitrary, we
conclude the proof. �
Remark that, if F also satisfies assumption (f1) then we have the equality in the
previous proposition.

THEOREM 3.7. Let K be a closed convex set, let P satisfies hypothesis (H0).
Assume the mapping F : K × K → R

m satisfies hypothesis (H1). Then

(EW)
∞ ⊂ R0 ⊂ R1 ⊂

⋂
y∈K

{
x ∈ K : F(x, y) �∈ −int P(x)

}∞ ⊂

⊂
⋂
y∈K

{
x ∈ K : F(y, x) �∈ int P(y)

}∞
.

If, in addition, there exists x̄ ∈ K such that F(y, x̄) ∈ −P(y) for all y ∈ K, then
R0 = (EW)

∞.

Proof. Set W(x) = R
m \ −int P(x), x ∈ K. Let us prove the first inclusion.

Let v ∈ (EW)
∞, then there exist tk ↓ 0, uk ∈ EW such that tkuk → v. For y ∈ K

arbitrary, we have F(uk, y) ∈ W(uk) for all k ∈ N. In addition, take any z ∈ K

such that F(y, z) ∈ −P(y). Let us fix any λ > 0. For k sufficiently large, the
P(y)-convexity of F(y, ·) implies

(1 − λtk)F (y, z) + λtkF (y, uk) ∈ F(y, (1 − λtk)z + λtkuk) + P(y).
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Hence

−F(y, (1 − λtk)z + λtkuk) ∈ W(y) + P(y) ⊂ W(y).

From Lemma 2.3, it follows that F(y, z + λv) ∈ −W(y). This proves v ∈ R0.
The second inclusion is straightforward and the proof of the third inclusion is

as follows. Let v ∈ K∞ such that −F(y, y + λv) ∈ W(y) for all λ > 0 and all
y ∈ K. By the previous proposition F(y+λv, y) ∈ W(y+λv) for all λ > 0 and all
y ∈ K. For any fixed y ∈ K, set xk

.= y+ kv ∈ K, k ∈ N. Then F(xk, y) ∈ W(xk)

for all k ∈ N. By choosing tk = 1/k, we have tkxk = y/k + v → v as k → +∞,
i.e., v ∈ {x ∈ K : F(x, y) ∈ W(x)}∞. Since y was arbitrary, the proof of the third
inclusion is complete. The fourth inclusion is a consequence of assumption (f1).

Let us prove the last part of the theorem. First observe that F(y, x̄) ∈ −P(y) ⊂
−W(y) for all y ∈ K implies that F(x̄, y) ∈ W(x̄) for all y ∈ K by Remark 3.3
Thus x̄ ∈ EW . Let v ∈ R0, we have, in particular, F(y, x̄ + λv) ∈ −W(y) for all
λ > 0 for all y ∈ K. It turns out that F(x̄ + λv, y) ∈ W(x̄ + λv) for all λ > 0 and
all y ∈ K by Remark 3.3 again, showing that x̄ + λv ∈ EW for all λ > 0. Hence
v ∈ (EW)

∞. �
Concrete applications of Theorem 3.7 and the following one will be given in Sec-
tion 5. For example, when dealing with convex vector minimization problems like
in Chen and Craven (1994), we can recover from the previous theorem and our
main result the existence theorem established in Chen and Craven (1994) and part
of Deng (1998a) as well.

We recall the following assumption introduced in Remark 3.4

(f ′
1) for all x, y ∈ K, F(x, y) �∈ −int P(x) implies F(y, x) ∈ −P(y),

which is a reinforcement of (f1). A class of vector functions satisfying (f ′
1) in R

2

for P(x) = R
2+ is given by

F(x, y) = (f1(x, y), f2(‖x − y‖)),
with f1 being any pseudomonotone function (f1(x, y) � 0 �⇒ f1(y, x) � 0) and
f2(t) � 0 for all t � 0.

We consider also the sharper closed cone

R′
0 =

⋂
y∈K

{
v ∈ K∞ : F(y, z + λv) �∈ int P(y) ∀ λ > 0,

∀ z ∈ K such that F(y, z) �∈ int P(y)
}
.

Obviously R′
0 ⊂ R0 ⊂ R1. The proof of the next theorem follows the lines of the

previous one.
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THEOREM 3.8. Let K be a closed convex set, let P satisfies hypothesis (H0).
Assume the mapping F : K ×K → R

m satisfies hypothesis (H1) with (f ′
1) instead

(f1). Then

(EW)
∞ ⊂ R′

0 ⊂ R0 ⊂ R1 ⊂
⋂
y∈K

{
x ∈ K : F(x, y) �∈ −int P(x)

}∞ ⊂

⊂
⋂
y∈K

{
x ∈ K : F(y, x) ∈ −P(y)

}∞
.

If, in addition,EW �= ∅ then R′
0 ⊂ (EW)

∞. As a consequence R′
0 = (EW)

∞.

In case we are interested in problem (3.2) above, Theorem 3.7 or Theorem 3.8
yields the following corollary. We recall that EP denotes the set of solutions to
problem (3.2).

COROLLARY 3.9. Let K be a closed convex set, let P satisfies hypothesis (H0).
Under assumptions of Corollary 3.5, if EP �= ∅, then

(EP )
∞ =

⋂
y∈K

{
v ∈ K∞ : F(y, z + λv) ∈ −P(y) ∀ λ > 0,

∀ z ∈ K such that F(y, z) ∈ −P(y)
}
.

Proof. Let x̄ ∈ EP . By assumption (f1) we have F(y, x̄) ∈ −P(y) for all
y ∈ K. Thus we can apply the preceding theorem or Theorem 3.7 to conclude with
the desired result. �
We are now in a position to establish our first main existence theorem.

THEOREM 3.10. Let K be a closed convex set in R
n; let P satisfies hypothesis

(H0). Moreover, let F : K×K → R
m be a vector-valued map satisfying hypothesis

(H1). If, in addition F is such that
(∗) for every sequence (xk) in K, ‖xk‖ → +∞ such that xk/‖xk‖ → v with

v ∈ R0 (or v ∈ R1) and for all y ∈ K it exists ky such that F(xk, y) �∈
−int P(xk) for all k � ky , there exists u ∈ K such that ‖u‖ < ‖xk‖ and
F(xk, u) ∈ −P(xk) for k ∈ N sufficiently large,

then problem (3.1) admits a solution and the solution set, EW , is closed.
Proof. For every k ∈ N, set Kk = {x ∈ K : ‖x‖ � k}. We may suppose,

without loss of generality, that Kk �= ∅ for all k ∈ N. Let us consider the problem

find x̄ ∈ Kk such that F(x̄, y) �∈ −int P(x̄) ∀ y ∈ Kk. (3.3)

By Lemma 3.2, problem (3.3) admits a solution, say xk ∈ Kk for all k ∈ N. If
‖xk‖ < k for some k ∈ N, then, we claim that xk is also a solution to problem
(3.1). In fact, if there is y ∈ K with ‖y‖ > k such that F(xk, y) ∈ −int P(xk), we
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take z ∈ K with z ∈ ]xk, y[ and ‖z‖ < k. Writing z = αxk + (1 − α)y for some
α ∈ ]0, 1[, we have by the P(xk)-convexity of F(xk, ·),

αF(xk, xk) + (1 − α)F(xk, y) ∈ F(xk, z) + P(xk).

This implies

−F(xk, z) ∈ −(1 − α)F(xk, y) + P(xk).

It follows that −F(xk, z) ∈ int P(xk), which contradicts the choice of xk. Con-
sequently xk is a solution to the original problem.

We consider now the case ‖xk‖ = k for all k ∈ N. We may suppose, without
loss of generality, that xk/‖xk‖ → v, v �= 0. Then v ∈ K∞. For any fixed y ∈ K

and λ > 0, we have F(xk, y) �∈ −int P(xk) for all k ∈ N sufficiently large. In
addition, take any z ∈ K such that F(y, z) ∈ −P(y). For k sufficiently large, the
P(y)-convexity of F(y, ·) implies(

1 − λ

‖xk‖
)
F(y, z) + λ

‖xk‖F(y, xk)

∈ F

(
y,

(
1 − λ

‖xk‖
)
z + λ

‖xk‖xk
)

+ P(y).

Hence

−F
(
y,

(
1 − λ

‖xk‖
)
z + λ

‖xk‖xk
)

�∈ −int P(y).

Thus, by the P(y)-lsc of F(y, ·) (see Lemma 2.3), F(y, z + λv) �∈ int P(y). This
proves v ∈ R0. By assumption, there exist u ∈ K such that ‖u‖ < ‖xk‖ and
F(xk, u) ∈ −P(xk) for k sufficiently large. We claim that xk is also a solution
to problem (3.1). If not, then there exists y ∈ K, ‖y‖ > k such that F(xk, y) ∈
−int P(xk). Since ‖u‖ < ‖xk‖ we can find z ∈ ]u, y[ such that ‖z‖ < k. From the
convexity,

αF(xk, u) + (1 − α)F(xk, y) ∈ F(xk, z) + P(xk)

for some α ∈ ]0, 1[. Hence,

−F(xk, z) ∈ −αF(xk, u) − (1 − α)F(xk, y) + P(xk)

∈ P(xk) + int P(xk) + P(xk) ⊂ int P(xk).

This contradicts the choice of xk, proving that xk is a solution to (3.1). �
We have point out that condition (∗) (respectively condition (∗∗) in the next the-
orem) holds vacuously in case R0 = {0} (respectively R′

0 = {0}) and it is implied,
for instance, by assuming R1 = {0} according to Theorem 3.7. Thus the sufficient
conditions imposed in Chen and Craven (1994), Deng (1998a) are recovered.

In a similar way we also obtain
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THEOREM 3.11. Let K be a closed convex set in R
n; let P satisfies hypothesis

(H0). Moreover, let F : K×K → R
m be a vector-valued map satisfying hypothesis

(H1) with (f ′
1) instead (f1). Then problem (3.1) admits a non-empty closed solution

set if and only if property (∗∗) is satisfied, where
(∗∗) for every sequence (xk) in K, ‖xk‖ → +∞ such that xk/‖xk‖ → v with

v ∈ R′
0 and for all y ∈ K it exists ky such that F(xk, y) �∈ −int P(xk) for all

k � ky , there exists u ∈ K such that ‖u‖ < ‖xk‖ and F(xk, u) ∈ −P(xk) for
k ∈ N sufficiently large.

Proof. The “if” part is similar to that of the previous theorem. The “only if”
part is obtained as follows. Take any sequence (xk) in K such that ‖xk‖ → +∞
and any x̄ ∈ EW . Then, by virtue of assumption (f ′

1), condition (∗∗) is satisfied by
setting u = x̄ and choosing xk with k sufficiently large such that ‖xk‖ > ‖x̄‖. �
REMARK 3.12.

(i) A stronger assumption than (f ′
1) and therefore of (f1) is the following

(f ′′
1 ) for all x, y ∈ K, F(x, y) �∈ −int P(x) implies F(y, x) ∈ −int P(y).

Such a condition implies EW is a singleton as one can deduce immediately.
(ii) A condition implying (∗), is the extension to the vector case of the so-called

Karamardian’s condition (Karamardian 1971) widely used in the study of
complementarity problems:
(+) there exists a non-empty compact set D ⊂ K such that ∀ x ∈ K \ D,

∃ y ∈ D: F(x, y) ∈ −P(x).
We point out that condition (+) in contrast to condition (++) below, applies to
situations in which the solution set to problem (3.1) may be unbounded. Notice
that the cone R0 (or (R1)) is not mentioned explicitely in (+).

Sometimes one could be interested, maybe by numerical aspects, in knowing
a priori, when the solution set is bounded. In this context, next theorems play
important roles. Characterizations of the non-emptiness and boundedness of the
solution set to scalar equilibrium problems were derived in Flores-Bazán (2000),
which generalize those obtained in Daniilidis and Hadjisavvas (1999).

THEOREM 3.13. Let K be a closed convex set in R
n; let P be a set-valued map

satisfying hypothesis (H0). Assume the vector-valued map F : K × K → R
m

satisfies hypothesis (H1). Then,
(a) R0 = {0} implies the solution set, EW , is non-empty and compact. The same

conclusion is obtained if instead is assumed the condition

∃ r > 0, ∀ x ∈ K \ Kr, ∃ y ∈ Kr : F(x, y) ∈ −int P(x), (3.4)

where Kr = {x ∈ K : ‖x‖ � r} �= ∅;
(b) under the additional assumption that there exists x̄ ∈ K such that F(y, x̄) ∈

−P(y) for all y ∈ K, we have: EW is non-empty and compact ⇐⇒ R0 = {0}
⇐⇒ (3.4) holds.
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Proof. (a) We take the sequence (xk) constructed in the proof of the previ-
ous theorem. We claim that such a sequence is bounded under either assumption
R0 = {0} or (3.4). In fact, if not, up to a subsequence, we have ‖xk‖ → +∞ and
xk/‖xk‖ → v, thus v ∈ K∞ and v �= 0. We argue exactly as in Theorem 3.10
to conclude that v ∈ R0, which cannot happen if R0 = {0}. On the other hand,
xk ∈ K \ Kr for k ∈ N sufficiently large and k > r. Under assumption (3.4), there
is yk ∈ Kr ⊂ Kk such that F(xk, yk) ∈ −int P(xk), contradicting the choice of xk ,
proving the claim in case (3.4) is satisfied. Therefore, up to a subsequence, xn → x̄,
x̄ ∈ K. For any fixed y ∈ K, the choice of xk implies F(xk, y) �∈ −int P(xk)
for all k sufficiently large (k > ‖y‖). Thus also −F(y, xk) �∈ −int P(y) for all
k sufficiently large. Applying Lemma 2.3, we obtain F(y, x̄) �∈ int P(y) for all
y ∈ K, proving that x̄ is a solution to problem (3.1) by virtue of Remark 3.3. A
similar reasoning proves also the boundedness of EW under (3.4), and in the first
case, it follows from Theorem 3.7. The closedness of EW is as before.
(b) Assume first EW �= ∅ and bounded. We shall prove the coercivity condition
(3.4) holds. If it was not so, in particular, for k > supx∈EW

‖x‖ + 1, there exists
x ∈ K \Kk such that for all y ∈ Kk one has F(x, y) �∈ −int P(x). Take λ ∈ ]0, 1[
such that, setting z = x̄ + λ(x − x̄), we have k − 1 � ‖z‖ < k. We claim that z is
a solution to problem (3.3). In fact, for all y ∈ Kk, λF(y, x) + (1 − λ)F (y, x̄) ∈
F(y, z) + P(y). Thus,

−F(y, z) ∈ P(y) + λ(Rm \ −int P(y)) + (1 − λ)P (y) ⊂ R
m \ −int P(y).

(3.5)

This together with Remark 3.3 imply that F(z, y) �∈ −int P(z) for all y ∈ Kk ,
proving that z is a solution to problem (3.3). We now prove that z is actually a
solution to (3.1). If not, there exists y ∈ K \ Kk satisfying F(z, y) ∈ −int P(z).
Choose z̃ = αy + (1 − α)z with α ∈ ]0, 1[ such that z̃ ∈ Kk. Again, by the
P(z)-convexity of F(z, ·), αF(z, y) + (1 − α)F(z, z) ∈ F(z, z̃) + P(z). This
implies

αF(z, y) ∈ (1 − α)P (z)+ (Rm \ −int P(z))+ P(z) ⊂ R
m \ −int P(z).

Hence F(z, y) �∈ −int P(z) which is a contradiction. The latter proves z ∈ EW .
On the other hand, by construction ‖z‖ � k − 1 > supx∈EW

‖x‖ � ‖z‖, which
cannot happen, proving the coercivity condition must hold. Because of Part (a),
it only remains to prove that the boundedness of EW implies R0 = {0}. This is a
consequence of Theorem 3.7, concluding the proof of the theorem. �
Analogously, we obtain the following characterization of the non-emptiness and
boundedness of the solution set EW under the more restrictive assumption (f ′

1).

THEOREM 3.14. Let K be a closed convex set in R
n; let P satisfies hypothesis

(H0). Assume a vector-valued map F : K × K → R
m is given and satisfies hypo-

thesis (H1) with (f ′
1) instead (f1). Then, the following assertions are equivalent.
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(a) EW is non-empty and compact;
(b) R′

0 = {0};
(c) ∃ r > 0, ∀ x ∈ K \ Kr, ∃ y ∈ Kr : F(x, y) ∈ −int P(x), where Kr = {x ∈

K : ‖x‖ � r} �= ∅.

Proof. (a) ⇐⇒ (b): One implication follows from Theorem 3.11 since (∗∗)
holds vacuosly if R′

0 = {0}. The other one is a consequence of Theorem 3.8.
(a) ⇐⇒ (c): These two implications are similar to the corresponding part in

the preceding theorem. �
In many papers (e.g., Bianchi et al. 1997; Oettli 1997; Hadjisavvas and Schaible
1998a among others) the following condition was imposed:
(++) there exist a nonempty compact subset D ⊂ K and y0 ∈ D such that

F(x, y0) ∈ −int P(x) for all x ∈ K \ D.
Such a condition has its origin in Brezis et al. (1972) and implies the solution set
is bounded. More precisely, we shall prove that assumption (++) together with
hypotheses (H0) and (H1) imply R1 = {0}. In fact, take any v ∈ R1, v �= 0. Then,
in particular, y0 + λv ∈ K \ D for all λ > 0 sufficiently large. Using assumption
(++) we get F(y0 +λv, y0) ∈ −int P(y0 +λv) for all λ > 0 sufficiently large. On
the other hand, v ∈ R1 implies F(y, y+λv) �∈ int P(y) for all λ > 0 and all y ∈ K.
By Proposition 3.6 we have in particular, F(y0 +λv, y0) �∈ −int P(y0 +λv) for all
λ > 0 sufficiently large, which contradicts a previous assertion. Hence we obtain
the following result whose proof follows the previous reasoning and Theorems 3.7
and 3.10.

COROLLARY 3.15. Under hypotheses (H0) and (H1) together with assumption
(++), the solution set to problem (3.1) is non-empty compact.

REMARK 3.16. We close this section by mentioning that concerning problem 3.2
one can deduce also existence results by taking into account Corollary 3.5 and
assuming additionally P(x) ∪ (−P(x)) = R

m for all x ∈ K.

4. The Classical Case

In this section, we deal with the case P(x) = R
m+ (m > 1), where R

m+ is the non-
negative orthant in R

m, and the components of F(x, ·) are semi-strictly quasicon-
vex. Under the convexity condition all the results of this section follow from pre-
vious one. Thus, we are concerned with the problem

find x̄ ∈ K such that F(x̄, y) �∈ −int R
m
+ ∀ y ∈ K. (4.1)

The set of x̄ ∈ K satisfying (4.1), is denoted by EW . Setting F(x, y) = (f1(x, y),

..., fm(x, y)), an equivalent formulation of (4.1) is

find x̄ ∈ K such that ∀ y ∈ K, ∃ iy : fiy (x̄, y) � 0.
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In this case (see the previous section)

R1 =
⋂
y∈K

m⋃
i=1

{
v ∈ K∞ : fi(y, y + λv) � 0 ∀ λ > 0

}
.

We denote by Ei the set of equilibrium points of fi , that is, the set of x̄ ∈ K such
that fi(x̄, y) � 0 for all y ∈ K. It is clear that Ei ⊂ EW .

Let us now recall some definitions.

DEFINITION 4.1. A function f : K → R with K being a convex set,
(i) is said to be semi-strictly quasiconvex, if given any u, v in K, f (u) �= f (v),

one has f (z) < max{f (u), f (v)} for all z ∈ ]u, v[;
(ii) is said to be quasiconvex if each of its level set is a convex set, or equivalently,

if f (tx + (1 − t)y) � max{f (x), f (y)} for all x, y in K and all t ∈ [0, 1].
Originally a semi-strictly quasiconvex function was termed strictly quasiconvex,
see for instance the monograph by Avriel et al. (1988). Simple examples show
that there are functions that are semi-strictly quasiconvex but not quasiconvex.
However, it is well known that any lsc and semi-strictly quasiconvex function is
quasiconvex.

THEOREM 4.2. Let K be a closed convex set. Assume that fi(x, x) = 0 for all
x ∈ K; for all y ∈ K, fi(y, ·), i = 1, ..., m, is lsc and quasiconvex. Furthermore,
suppose that for all x, y ∈ K, F(x, y) �∈ −int R

m+ implies F(y, x) �∈ int R
m+. Then

(a) (EW)
∞ ⊂ R1;

(b) if, in addition, Ei �= ∅ for all i = 1, ..., m and

Ei =
{
x ∈ K : fi(y, x) � 0 ∀ y ∈ K

}
, (4.2)

then
m⋃
i=1

⋂
y∈K

{
v ∈ K∞ : fi(y, y + λv) � 0 ∀ λ > 0

}
⊂ (EW)

∞.

Proof. Part (a). Take any xk ∈ EW and tk ↓ 0 such that tkxk → v. Let us fix
any y ∈ K, then F(xk, y) �∈ −int R

m+. Thus F(y, xk) �∈ int R
m+, therefore there

exists ik ∈ {1, ..., m} such that fik (y, xk) � 0. Since the set {1, ..., m} is compact,
we may assume that i0

.= ik0 = ik for all k � n0. Hence

fi0(y, xk) � 0 ∀ k � k0.

By the quasiconvexity of fi0(y, ·), we have for all λ > 0,

fi0(y, (1 − λtk)y + λtkxk) � max{fi0(y, y), fi0(y, xk)} = 0

for k ∈ N sufficiently large. The lower semicontinuity of fi0(y, ·) implies fi0(y, y+
λv) � 0 for all λ > 0. This proves that v ∈ R1.
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Let us prove Part (b). It is proved in Theorem 3.3 of Flores-Bazán (2000) that

(Ei)
∞ =

⋂
y∈K

{
v ∈ K∞ : fi(y, y + λv) � 0 ∀ λ > 0

}
.

Since Ei ⊂ EW for all i = 1, ..., m, the conclusion follows. �
Conditions under which (4.2) holds are given in Flores-Bazán (2000).

EXAMPLE 4.3.
(i) The following example shows, on one hand, the inclusions in Part (a) of the

previous theorem may be strict, and on the other, Part (b) fails to be true if
Ei = ∅ for some i. Take K = R

2 and F((x1, x2), (y1, y2)) = (
√|y1| −√|x1|, ey2 − ex2). Then

R1 =
(
{0} × R

)
∪

(
R × ] − ∞, 0]

)
,

while EW = {0} × R. Notice that E2 = ∅.
(ii) Let K = R, F(x, y) = (

√|y| − √|x|, y/(1 + |y|) − x/(1 + |x|)). It is not
difficult to show that EW = ] − ∞, 0] = R1.

In what follows, given a function f : K × K → R, f∞ will denote the recession
function of f (x, ·) for all x ∈ K, where we have extended f (x, ·) by setting
f (x, y) = +∞ if y ∈ R

n \ K.

COROLLARY 4.4. Assume that for all x ∈ K fi(x, x) = 0; for all y ∈ K

fi(y, ·), i = 1, ..., m, is convex and lsc. Furthermore, suppose that for all x, y ∈ K,
F(x, y) �∈ −int R

m+ implies F(y, x) �∈ int R
m+. Then,

(a) if EW �= ∅, we have

(EW)
∞ ⊂

⋂
y∈K

m⋃
i=1

{
v ∈ K∞ : f∞

i (y, v) � 0
}
;

(b) if Ei �= ∅ for all i = 1, ..., m and

Ei =
{
x ∈ K : fi(y, x) � 0 ∀ y ∈ K

}
,

then

m⋃
i=1

{
v ∈ K∞ : f∞

i (y, v) � 0 ∀ y ∈ K
}

⊂ (EW)
∞. (4.3)

Proof. This follows directly from the definition of recession function for convex
functions. �
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REMARK 4.5. An interesting situation occurs when all the sets {v ∈ K∞ :
f∞
i (y, v) � 0} are independent of y (for instance if fi(x, y) = hi(y) − hi(x)). In

this case we have an equality in (4.3), for details we refer to Flores-Bazán (1999).

EXAMPLE 4.6.
(i) We show that the inclusions in Part (a) of the previous corollary may be

strict. Take K = R
2, F((x1, x2), (y1, y2)) = (y2

1 − x2
1 , e

y2 − ex2). Then
f∞

1 ((y1, y2), (v1, v2)) = 0 if v1 = 0, f∞
1 ((y1, y2), (v1, v2)) = +∞ else-

where; f∞
2 ((y1, y2), (v1, v2)) = 0 if v2 � 0, f∞

2 ((y1, y2), (v1, v2)) = +∞
elsewhere. Thus,

R1 =
(
{0} × R

)
∪

(
R × ] − ∞, 0]

)
,

while EW = {0} × R = (EW)
∞. Notice that E2 = ∅.

(ii) LetK = R
2 and F((x1, x2), (y1, y2)) = (y2

1 −x2
1 , y

2
2 −x2

2). Then f∞
i ((y1, y2),

(v1, v2)) = 0 if vi = 0, f∞
i ((y1, y2), (v1, v2)) = +∞ elsewhere. Thus,

R1 =
(
{0} × R

)
∪

(
R × {0}

)
= EW.

Notice that EW is not convex even if F(x, ·) is R
m+-convex.

LEMMA 4.7. LetK be a closed set; for i = 1, ..., m, assume that fi : K×K → R

is such that for all x ∈ K, fi(x, ·) is lsc Then, for all x ∈ K, the set A = {y ∈
K : F(x, y) �∈ int R

m+} is closed.

Proof. It follows from Lemma 2.3 since R
m-lower semicontinuity of F(x, ·) is

equivalent to the usual lower semicontinuity of each fi(x, ·). �

LEMMA 4.8. Let K be a convex compact set; assume that for i = 1, ..., m, fi :
K×K → R is such that for all x ∈ K, fi(x, ·) is lsc and semi-strictly quasiconvex,
and fi(x, x) = 0. In addition, suppose that for all x, y ∈ K, F(x, y) �∈ −int R

m+
implies F(y, x) �∈ int R

m+. Then, there exists x̄ ∈ K such that F(y, x̄) �∈ int R
m+ for

all y ∈ K.

Proof. Set

G(y) =
{
x ∈ K : F(y, x) �∈ int R

m
+
}
, y ∈ K.

This is a closed set by the preceding lemma, and since K is bounded, it is compact.
We will show that the convex hull co{y1, ..., yk} ⊂ ⋃

i G(yi) for every k ∈ N and
then the conclusion will be a consequence of the KKM lemma as in Section 3. If
z = ∑k

i=1 αiyi �∈ ⋃k
i=1 G(yi) for some αi � 0, i = 1, ..., k,

∑k
i=1 αi = 1, then
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z �∈ G(yi) for all i = 1, ..., k. Thus F(yi, z) ∈ int R
m+, which implies F(z, yi) ∈

−int R
m+ for all i = 1, ..., k. Hence

fj (z, yi) < 0 ∀ j = 1, ..., m, ∀ i = 1, ..., k.

The quasiconvexity of fj implies that fj (z, z) < 0 for all j = 1, ..., m, which
contradicts the assumption F(x, x) = 0, proving co{y1, ..., k} ⊂ ⋃k

i=1 G(yi) for
all k ∈ N. An application of the KKM lemma provides the existence of x̄ ∈ K such
that x̄ ∈ ⋂

y∈K G(y), which is the required solution. �
In order to solve problem (4.1), we shall require the following hypothesis

HYPOTHESIS (H2). The vector-valued mapping F = (f1, ..., fm) : K × K →
R
m is such that

(f ′
0) for all x ∈ K, F(x, x) = 0;

(f ′
1) for all x, y ∈ K, F(x, y) �∈ −int R

m+ implies F(y, x) �∈ int R
m+;

(f ′
2) for all x ∈ K and all i = 1, ..., m, the function fi(x, ·) : K → R is semi-

stricly quasiconvex and lsc;
(f ′

3) for all x, y ∈ K, the set {ξ ∈ [x, y] : F(ξ, y) �∈ −int R
m+} is closed.

We remark that assumption (f ′
1) is weaker than requiring pseudomonotonicity in

the sense of Karamardian for each fi , that is,

∀ x, y ∈ K, fi(x, y) � 0 �⇒ fi(y, x) � 0.

REMARK 4.9. Lemma 4.8 asserts the existence of x̄ ∈ K such that F(y, x̄) �∈
int R

m+ for all y ∈ K. We shall prove that under hypothesis (H2), essentially
assumption (f ′

3), one has F(x̄, y) �∈ −int R
m+ for all y ∈ K. In fact, let y ∈ K and

take xt = x̄ + t (y − x̄), t ∈ ]0, 1[. Clearly xt ∈ K. By assumption fj (xt , x̄) � 0
for some j ∈ {1, ..., m}. We claim that F(xt , y) �∈ −int R

m+ for all t ∈ ]0, 1[. If,
on the contrary, there is t ∈ ]0, 1[ such that F(xt , y) ∈ −int R

m+, we have, by the
semi-strict quasiconvexity in case fj (xt , x̄) = 0 > fj(xt , y),

0 = fj (xt , xt ) < max{fj (xt , x̄), fj (xt , y)} = 0,

which cannot happen. In the case fj (xt , x̄) < 0, the quasiconvexity implies

0 = fj (xt , xt ) � max{fj(xt , x̄), fj (xt , y)} < 0,

which is also absurd. Hence F(xt , y) �∈ −int R
m+ for all t ∈ ]0, 1[. Assumption

(f ′
3) yields the desired result.

The following theorem is the first main result of this section.

THEOREM 4.10. Assume that the vector function F = (f1, ..., fm) : K × K →
R
m satisfies hypothesis (H2). Then, the solution set to problem (4.1) is non-empty

and closed if the following property is satisfied:
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(∗) for every sequence (xk) in K, ‖xk‖ → +∞ such that xk/‖xk‖ → v with
v ∈ R1 and for all y ∈ K it exists ky such that F(xk, y) �∈ −int R

m+ for all
k � ky , there exists u ∈ K such that ‖u‖ < ‖xk‖ and F(xk, u) ∈ −R

m+ for
k ∈ N sufficiently large.

Proof. We proceed as in the proof of Theorem 3.10. For every k ∈ N, set Kk =
{x ∈ K : ‖x‖ � k}. We may suppose, without loss of generality, that Kk �= ∅ for
all k ∈ N. Let us consider the problem

find x̄ ∈ Kk such that F(x̄, y) �∈ −int R
m
+ ∀ y ∈ Kk. (4.4)

By Lemma 4.8 and Remark 4.9, problem (4.4) admits a solution, say xk ∈ Kk for
all k ∈ N. If ‖xk‖ < k for some k ∈ N, we claim that xk is also a solution to
problem (4.1). In fact, if not, there exists y ∈ K, ‖y‖ > k such that fi(xk, y) < 0
for all i = 1, ..., m. Take any z ∈ ]xk, y[ such that ‖z‖ < k. By the choice of xk ,
there exists ik such that fik (xk, z) � 0. By the semi-strict quasiconvexity

fik (xk, z) < max{fik (xk, xk), fik (xk, y)} = fik (xk, xk) = 0,

which contradicts the choice of ik. Hence the claim is proved. Now, we assume
that ‖xk‖ = k for all k ∈ N. We may also suppose, without loss of generality, that
xk/‖xk‖ → v. Then v ∈ K∞. For any fixed y ∈ K and all k > ‖y‖ there is ik such
that fik (xk, y) � 0. Using an argument similar to that used in Theorem 4.2, we
conclude that v ∈ R1. By property (∗), there exists u ∈ K, such that ‖u‖ < ‖xk‖
and F(xk, u) ∈ −R

m+ for k sufficiently large. We claim that xk is also a solution
to problem (4.1). If not, there exists y ∈ K, ‖y‖ > k such that fi(xk, y) < 0
for all i = 1, ..., m. Since ‖u‖ < ‖xk‖ = k, we can find z ∈ ]u, y[ such that
‖z‖ < k. Take j ∈ {1, ..., m} such that fj (xk, z) � 0. We distinguish two cases,
when fj (xk, u) = 0 > fj(xk, y), one obtains by the semi-strict quasiconvexity,

0 � fj (xk, z) < fj(xk, u) = 0

which cannot happen. If fj (xk, u) < 0, then, by quasiconvexity

fj (xk, z) � max{fj (xk, u), fj (xk, y)} < 0

contradicting the choice of j . Consequently xk is a solution to problem (4.1). �
We know, from Theorem 4.5 in Flores-Bazán (2000), that

⋂
y∈K

{
v ∈ K∞ : fi(y, y + λv) � 0 ∀ λ > 0

}
= {0}

⇐⇒ Ei is a nonempty and compact set.

Therefore, if R1 = {0}, from Theorem 4.10 we have that EW is non-empty and by
Theorem 4.2, it is also compact. On the other hand, R1 = {0} implies⋂

y∈K

{
v ∈ K∞ : fi(y, y + λv) � 0 ∀ λ > 0

}
= {0} for i = 1, ..., m.
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Thus, Ei �= ∅ and compact for all i = 1, ..., m.

5. Vector Variational Inequalities and Minimization Problems

As before K is a convex closed set in R
n. Let T : R

n → R
m×n be a mapping taking

values in the space of real m×n matrices, denoted by R
m×n. Let P be a set-valued

map satisfying hypothesis (H0). Throughout this section W(x) = R
m \ −int P(x)

or in case P is constant, W = R
m \ −int P . In addition, we are also given a

vector-valued function h : R
n → R

n.
Let us consider the vector-valued mapping F defined as

F(x, y) = T (x)(y − h(x)), x, y ∈ K. (5.1)

Assume that such a vector mapping satisfies hypothesis (H1) of Section 3. It is
requested to

find x̄ ∈ K such that T (x̄)(y − h(x̄)) ∈ W(x̄) for all y ∈ K. (5.2)

The associated cone R1 (see Section 3) is

R1 =
⋂
y∈K

{
v ∈ K∞ : T (y)(y + λv − h(y)) ∈ −W(y), ∀ λ > 0

}
.

It follows that

R1 ⊂
{
v ∈ K∞ : T (y)(v) ∈ −W(y) ∀ y ∈ K

}
⊂ R0.

The first inclusion is trivial because of F(y, y) = T (y)(y − h(y)) ∈ P(y) ∩
(−P(y)) for all y ∈ K and W(y) + P(y) ⊂ W(y). This implies, in the case when
P(x) is pointed for all x ∈ K, problem (5.2) is nothing else that the problem

find x̄ ∈ K such that T (x̄)(y − x̄) ∈ W(x̄) for all y ∈ K, (5.3)

since T (x)(y − h(x)) = T (x)(y − x) + T (x)(x − h(x)) = T (x)(y − x). The
second inclusion is straightforward. Therefore, since R0 ⊂ R1, we have

R0 = R1 =
{
v ∈ K∞ : T (y)(v) ∈ −W(y) ∀ y ∈ K

}
. (5.4)

Thus by Theorem 3.7

(EW)
∞ ⊂ R0 = R1 =

{
v ∈ K∞ : T (y)(v) ∈ −W(y) ∀ y ∈ K

}
.

We introduce three additional cones

R
.=

{
v ∈ K∞ : T (y)(y + λv − h(y)) ∈ −P(y) ∀ y ∈ K ∀ λ > 0

}
;

R̃1
.=

{
v ∈ K∞ : T (y)(v) ∈ −W(y) ∀ y ∈ K

}
;

R̃
.=

{
v ∈ K∞ : T (y)(v) ∈ −P(y) ∀ y ∈ K

}
.
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Remark that R̃1 is the corresponding cone to the problem (5.3). It follows that
R ⊂ R̃ and, if EW �= ∅ then

R ⊂ R̃ ⊂ (EW)
∞. (5.5)

In fact, let us fix any x̄ ∈ EW and take any v ∈ R̃. Hypotheses (H0) and (H1)
imply, for every y ∈ K,

T (y)(x̄ + λv − h(y)) = T (y)(x̄ − h(y)) + λT (y)(v) ∈ −W(y) − P(y) ⊂
⊂ −W(y).

Hence by Remark 3.3 T (x̄ + λv)(y − x̄ − λv) ∈ W(x̄ + λv) for all y ∈ K, which
says that x̄ + λv ∈ EW for all λ > 0. Hence v ∈ (EW)

∞. A similar reasoning
proves R̃ ⊂ R′

0. Thus, we have the following chain of inclusions

R ⊂ R̃ ⊂ R′
0 ⊂ R0 = R1 = R̃1.

If (f ′
1) is assumed instead of (f1), using Proposition 3.6, we obtain R1 ⊂ R. The

latter together with (5.4) imply R̃1 = R̃. Hence

R = R′
0 = R0 = R1 = R̃1 = R̃.

On the other hand, since in general R1 is not convex, a reasonable assumption
on R1 in order that (∗∗) be satisfied, is R1 ⊂ −R1. This assumption together
with (f ′

1) (instead of (f1)) imply property (∗∗) (see Theorem 3.11). Indeed, every
v ∈ R1 ⊂ −R1 satisfies T (y)(y−λv−h(y)) ∈ −W(y) for all λ > 0 and all y ∈ K.
By Proposition 3.6 T (y − λv)(y − h(y − λv)) ∈ W(y − λv) for all λ > 0 and all
y ∈ K. Assumption (f ′

1) implies T (y)(y − λv − h(y)) ∈ −P(y) for all λ > 0 and
all y ∈ K. Thus, if xk ∈ K, ‖xk‖ → +∞, xk/‖xk‖ → v with v ∈ R′

0 ⊂ R0 = R1,
condition (∗∗) will be satisfied by setting u = xk − ‖xk‖v for k sufficiently large.

We extend the notion of polar cone to our setting in the following manner. We
define the “weak polar cone” of T (K), (T (K))0

w, as follows

(T (K))0
w

.=
{
u ∈ R

n : T (y)(u) ∈ −W(y) ∀ y ∈ K
}
,

whereas the “strong polar cone” of T (K) is

(T (K))0
s

.=
{
u ∈ R

n : T (y)(u) ∈ −P(y) ∀ y ∈ K
}
.

Certainly both notions coincide when m = 1. Hence

R0 = R1 = K∞ ∩ (T (K))0
w, R̃ = K∞ ∩ (T (K))0

s .

The previous results are summarized in the next theorems.

THEOREM 5.1. Let K be a closed convex set in R
n; let P satisfy hypothesis (H0).

Moreover, let T : R
n → R

m×n be a mapping such that the vector-valued function
F given by (5.1) satisfies hypothesis (H1). Then
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(a) (EW)
∞ ⊂ R0 = R1 = K∞ ∩ (T (K))0

w. In case EW �= ∅, R ⊂ K∞ ∩
(T (K))0

s ⊂ (EW)
∞;

(b) K∞ ∩ (T (K))0
w = {0} �⇒ EW is non-empty and compact �⇒ R = K∞ ∩

(T (K))0
s = {0}.

(c) ∃ r > 0, ∀ x ∈ K \ Kr, ∃ y ∈ Kr : T (x)(y − h(x)) �∈ W(x) �⇒ EW is
non-empty and compact. Here Kr = {x ∈ K : ‖x‖ � r} �= ∅.

REMARK 5.2. As observed earlier, the set R̃1 is the corresponding cone R1 to
problem (5.3), and because of the equality (5.4), one may study the possible re-
lationship between problems (5.2) and (5.3). First of all, we see that under the
assumption T (x)(x − h(x)) ∈ P(x) ∩ (−P(x)) for all x ∈ K, we have

∀ x, y ∈ K, T (x)(y − h(x)) ∈ W(x) �⇒ T (y)(x − h(y)) ∈ −W(y)

if and only if

∀ x, y ∈ K, T (x)(y − x) ∈ W(x) �⇒ T (y)(x − y) ∈ −W(y).

Certainly, F(x, ·) is P(x)-lower semicontinuous if and only if G(x, ·) is so, where
F(x, y) = T (x)(y − x) and G(x, y) = T (x)(y − h(x)). It remains to analyze the
assumption (f3) of hypothesis (H1) for both problems.

REMARK 5.3. We can go further in the case when P(x) = R
m+, W(x) = R

m \
−int R

m+. In such a situation we consider problem (5.3). Writing

T (x)(v) = (〈T1(x), v〉, . . . , 〈Tm(x), v〉),
where Ti(x) is the ith-row of the matrix T (x), we get

R1 =
⋂
y∈K

m⋃
i=1

{
v ∈ K∞ : 〈Ti(y), v〉 � 0

}
,

R =
⋂
y∈K

m⋂
i=1

{
v ∈ K∞ : 〈Ti(y), v〉 � 0

}
=

m⋂
i=1

K∞ ∩ (Ti(K))0.

(5.6)

The condition for all x, y ∈ K,

T (x)(y − x) �∈ −int R
m
+ �⇒ T (y)(x − y) �∈ int R

m
+

is weaker than the condition that each Ti is pseudomonotone in the sense of Kara-
mardian, which means

〈Ti(x), y − x〉 � 0 �⇒ 〈Ti(y), x − y〉 � 0.

Under the latter condition and upper semicontinuity along lines on fi(·, y) for
fi(x, y) = 〈Ti(x), y−x〉, it is known (see Crouzeix, 1997; or Flores-Bazán, 2000)
that

Ei is non − empty and compact ⇐⇒ K∞ ∩ (Ti(K))0 = {0}.
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Here Ei is the solution set of the problem

find x̄ ∈ K such that 〈Ti(x̄), y − x̄〉 � 0 ∀ y ∈ K.

Hence, R1 = {0} implies the solution set to (5.3), EW , is a non-empty compact set
and, for i = 1, ..., m, Ei is also non-empty and compact (see (5.6)). This implies
R = {0}.
The next theorem is the analogue to the previous theorem when assumption (f ′

1) is
assumed instead of (f1).

THEOREM 5.4. Let K,P be as in the preceding theorem and let T : R
n →

R
m×n be a mapping such that the vector-valued function F given by (5.1) satisfies

hypothesis (H1) with (f ′
1) instead (f1). Then

(a) R = R′
0 = R0 = R1 = K∞ ∩ (T (K))0

w = K∞ ∩ (T (K))0
s ;

(b) in case EW �= ∅, (EW)
∞ = R′

0 = R0 = R1 = R = K∞ ∩ (T (K))0
w =

K∞ ∩ (T (K))0
s ;

(c) R1 ⊂ −R1 �⇒ EW �= ∅;
(d) K∞ ∩ (T (K))0

w = {0} ⇐⇒ K∞ ∩ (T (K))0
s = {0} ⇐⇒ R0 = {0} ⇐⇒

R1 = {0} ⇐⇒ R = {0} ⇐⇒ R′
0 = {0} ⇐⇒ EW is non-empty and compact

⇐⇒ ∃ r > 0, ∀ x ∈ K \ Kr, ∃ y ∈ Kr : T (x)(y − h(x)) �∈ W(x).

Other existence theorems for vector variational inequalities may be found in An-
sari (2000), Chen (1992), Giannessi (2000), Konnov and Yao (1997), Daniilidis
and Hadjisavvas (1996), Siddiqi et al. (1995), Yang and Goh (1997).

A particular vector variational problem arises when dealing with vector minim-
ization problems (see Yang and Goh, 1997). Take P as a constant cone satisfying
hypothesis (H0). Let G : K → R

m be a P -convex vector-valued mapping. It is
requested to find

x̄ ∈ K such that G(y) − G(x̄) �∈ −int P for all y ∈ K. (5.7)

This problem has been studied in Flores-Bazán (1999) under either the P -convexity
condition on G or semi-strict quasiconvexity on each component of G in case
P = R

m+. In the latter situation, some characterizations of the non-emptiness and
compactness of the solution set to (5.7) has been established in Deng (1998a, b),
see also Chen and Craven (1994) . Since the R

m+-convexity of G amounts to saying
that each component gi , i = 1, ..., m, of G is convex, it is not difficult to prove, by
assuming that each gi is differentiable (see Chen and Craven, 1994, for instance),
that problem (5.7) is equivalent to find

x̄ ∈ K such that DG(x̄)(y − x̄) �∈ −int R
m
+ for all y ∈ K. (5.8)

Here DG(x) stands for the derivative of G at x, which is a matrix of order m × n

given by the partial derivatives ∂gi/∂xj . Problem (5.8) is of the form (3.1). Con-
sequently, by Theorems 3.10 and 3.7 (use F(x, y) = DG(x)(y − x)), the solution
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set of (5.7) or (5.8) is nonempty and bounded (compact) if
{
x ∈ K : DG(x)(y − x) �∈ −int R

m
+
}

is bounded for some y ∈ K. Such a result is the one established in Theorem 2.3
of Chen and Craven (1994). Notice that (DG(x) − DG(y))(x − y) ∈ R

m+ for all
x, y ∈ K.
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